
DeepPrivate: Scalable Distributed
DNN Training with Data and Model Privacy

Nishant Relan1, Yihan Jiang1, Songze Li2, Robert Raynor1, and Sreeram Kannan1
1 University of Washington

2 Hong Kong University of Science and Technology

Abstract—A key friction in the information era is between the
high utility of data and stringent privacy considerations. One
possible resolution is to perform distributed learning with privacy
guarantee. Consider N nodes, each of which stores locally some
(function of) data from a set of clients, collaboratively train a
model that is requested by a remote learner node, using data from
all clients collectively. For this task, we develop DeepPrivate, a
protocol that provides information-theoretic guarantees simulta-
neously for data and model privacy against any T < N colluding
workers and data privacy against the curious learner. To achieve
this, DeepPrivate partitions the entire dataset into K < N parts,
and leverages secret sharing and compatible erasure coding to
securely distribute the coded data partitions and intermediate
computation results during the training process. As a result,
DeepPrivate achieves a factor K = Θ(N) reduction in computa-
tion complexity compared with state-of-the-art private machine-
learning frameworks. Furthermore, DeepPrivate improves the
scalability and security via layer-by-layer training, which allows
the workers to only compute polynomials of low degree during
training, at a small cost on the model accuracy.

I. INTRODUCTION

Data privacy and security have become a significant con-
sideration for modern data analytics. Therefore, machine
learning methods that achieve high accuracy while preserving
privacy are of great interest. In this paper we consider a
distributed learning system consisting of N worker nodes
(e.g., edge servers), each of whom stores some data from
a set of clients (e.g., smartphones and IoT devices), and
a remote learner node who wants to obtain a deep neural

Fig. 1. System Model

network (DNN) model
trained using all clients’
data (Figure 1). The
training process has to be
performed such that 1)
the clients’ data has to be
kept private from curious
(potentially colluding)
worker nodes and the
curious learner; and 2) the
final trained model has to
be kept private from the
workers. The above model fits well with a wide range of
applications. Two typical examples are given below.

1. Secure data market. A group of N worker nodes
collaborate to provide the functionality of a data market, on
which the knowledge extracted from data, rather than the data
itself, is traded. For instance, data owners store their data

in a privacy-preserving manner on the market, which can be
purchased to contribute to training machine learning models
intended by some learner on the other side of the market. During
this trading process, the market should not gain any knowledge
about the data and the model, and the learner should not know
anything about the data other than what can be inferred from
the trained model.

2. Secure cross-silo federated learning. In this case, a learner
node (which may host some paid data-analytics services) would
like to extract relevant knowledge from participating institutes
(e.g., banks or hospitals) whose data are highly confidential. In
this case, the data owners and the worker nodes can co-locate at
some institutes. Importantly, by the end of the training process,
the learner should be the only party that possesses the trained
model, as opposed to the learning participants.

Currently, privacy-preserving DNN training is achieved by
techniques of homomorphic encryption (HE) (see, e.g., [3, 19,
24]) and secure multiparty computation (MPC) (see, e.g., [1,
33, 34, 46]). HE-based algorithms perform DNN training and
inference on cryptographically encrypted data, which requires
approximating the activation functions in a neural network as
low-degree polynomials (as HE only works with addition and
multiplication), and thus compromising the accuracy of the
trained model. For the MPC-based schemes, secret shares of
the original data are distributed to different parties, which are
used locally to train the network in the secret domain. While
MPC protocols have been developed for secure DNN training
in two-party [1, 34] and three-party [33, 46] settings, they do
not naturally extend to general N -party cases. For all of the
developed HE and MPC based schemes, each compute node
operates on an encrypted or shared data that is of the same
size of the original data, and hence the computation efficiency
(e.g., training time) does not scale with the number of compute
nodes. Both HE and MPC based schemes focus on protecting
data privacy. For a similar setting where a set of clients, each
of which has some local data, collaborate with a remote server
to train a global model, federated learning [31] has recently
emerged as a secure distributed ML paradigm where each client
trains a local model using its local data, and communicates its
learnt model (but not data) to the server. The server aggregates
the received local models to generate and update a global model.
Various techniques involving differential privacy [18, 32, 45]
and secure aggregation [10] have been developed to protect
the data privacy of the clients from the local models. However,
little attention has been paid on protecting the privacy of the

global model against curious clients.
Recently, a decentralized secure machine learning framework

named COPML is proposed in [42] for logistic regression
problem. COPML reduces the computation complexity at
each worker node compared with conventional MPC schemes,
and achieves information-theoretic data privacy. Specifically,
COPML partitions the entire dataset into K < N parts, and
applies another layer of Lagrange encoding [50] on top of
Shamir secret sharing [39], to create N coded data partitions,
each of which has a size of 1/K of the entire dataset and
processed at a single node. In this way, the computation load of
each node is reduced by a factor of K, while the data privacy
is still protected by Lagrange coding.

We propose DeepPrivate to further extend COPML to train
deep neural networks. A key enabler of DeepPrivate is to adopt
layer-by-layer training (see e.g., [8]), such that a neural network
is trained one layer at a time. We experimentally demonstrate
on various datasets that layer-by-layer training, when combined
with quantization, polynomial activation and loss functions,
incurs negligible accuracy loss compared with models learnt
end-to-end using ReLU activation and cross-entropy loss.

This allows each DeepPrivate node to compute a polynomial
with a small degree in training a single layer, and apply COPML
to achieve data privacy and improve computation efficiency. By
the end of training a single layer, each worker has only a secret
share of the trained model, satisfying the model privacy at the
clients. Moreover, workers add additional randomness to secret
shares forwarded to the remote learner, guaranteeing a full
reconstruction of the model in the clear without leaking any
additional information about clients’ data. Finally, DeepPrivate
maintains the data privacy at the worker nodes across layers
by having each worker compute a secret share of the input to
the next layer by passing a share of the input to the current
layer through a share of the just trained layer parameters.

To summarize, our main contribution is reflected in the
following salient features of DeepPrivate:
• Significant improvement on computation complexity com-

pared with conventional HE and MPC based secure DNN
training algorithms;

• Simple implementation based on layer-by-layer training
for DNNs. Low complexity for (coded) gradient compu-
tation and decoding at each client.

• Does not require any cryptographic primitives. Essentially
only Reed-Solomon codes are needed.

• Formal information-theoretic security for data and model
at colluding workers, and for data at the learner.

Related works

Homomorphic encryption (HE) [17] techniques have been
leveraged to perform privacy-preserving machine learning [2,
11, 19–21, 23, 24, 29, 43, 51]. Specifically, a client uploads a
ciphertext of its data to a remote server who performs training
or inference directly over the encrypted data. This approach
works for DNNs by approximating the activation functions
(e.g., sigmoid or ReLU) and the max pooling operation using
low-degree polynomials to achieve reasonable computation

throughput. While HE-based approaches enjoy small commu-
nication overhead between the client and the server, they often
suffer from implementing complicated cryptographic tools like
public-key encryption/decryption, and accuracy loss due to
polynomial approximations.

Apart from HE, protocols based on multiparty computation
(MPC) [7, 14, 30] have been proposed for secure machine
learning tasks [13, 30, 36], and particularly for deep neural
networks (see, e.g., [1, 34, 46]). In this case, a client distributes
secret shares of its private data to multiple compute nodes,
each of which cannot infer the client’s data from its own share.
Each node trains a network locally on its share of the data, and
securely exchanges the computed result with its peers via secure
computation primitives like Garbled Circuits [49] and Oblivious
Transfer [4, 37]. As it is difficult to generalize such primitives
to work with a large number of compute nodes, current MPC-
based protocols are limited to two-party [1, 15, 34] and three-
party settings [33, 46].

Federated learning (FL), as an emerging distributed learning
framework that focuses on participants’ data privacy, has each
of the distributed participants who has some data locally train a
local model with its data, and send the data to a remote server to
aggregate into a global model. While the data never leaves the
participants, it was shown that much of the information about
the data and the identities of the participants themselves can be
inferred from the local models received at the server side (see,
e.g., [16, 40, 47, 52]). Many techniques based on differential
privacy [18, 32, 45] and MPC primitives [10, 22, 41] have
been developed to address this issue.

While state-of-the-art HE and MPC based secure deep
learning protocols and FL protocols all focus on protecting
clients’ data privacy, protocols have been recently developed
to provide explicit guarantees on both data privacy at remote
server and model privacy on the local compute nodes, in the
context of DNN inference [38]. In this paper, we take one
step further to develop a protocol with such two-sided privacy
requirement for a more challenging problem of DNN learning.

The layer-by-layer training approach trains a deep neural
network one layer at a time, and was popularized in series
of early works on deep learning [8, 26]. Once the model
parameters of one layer are trained, they are frozen and used
to generate the input data for training the next layer. The
layer-by-layer approach has since been superceded by other
techniques. However, here we revisit this training architecture
due to the privacy constraints. More recent work [25] argued
that for training DNNs on the MNIST dataset, the layer-by-
layer approach can achieve similar model accuracy with the
conventional backpropagation approach in much less time.

II. SECURE DISTRIBUTED DNN TRAINING

A. System and Threat Models

We consider a distributed learning system that consists of
M data-owning nodes, N worker nodes, and one Learner
node. Each data owner i has a private dataset (X̄i, Ȳi) of size
mi, where X̄i ∈ Rd×mi contains the set of input features of
dimension d and Ȳi ∈ R`×mi contains the corresponding set

of output labels of dimension `. Let m ,
∑
imi be the size of

the joint dataset (X,Y) created by concatenating (X̄i, Ȳi) for
all i ∈ [M]. The Learner intends to leverage the computational
power of the worker nodes to train a deep feed-forward neural
network over the private dataset (X,Y).

We consider a threat model in which the workers are honest-
but-curious. In particular, the workers follow the protocol hon-
estly, but may collude amongst themselves to learn additional
information about the data and the model. We assume that the
Learner is also honest-but-curious, but does not collude with
any other parties.

B. Privacy Requirements

We impose two-sided privacy requirement on this distributed
learning system. Specifically, by the end of the training process,
we want the following guarantees:

1) The Learner learns nothing about the private data, except
for the weight parameters of the trained DNN.

2) The workers do not learn anything about the trained
model nor the private data. This should hold true even
if up to T workers collude, for some T < N .

C. DNN Architecture

We consider training a feed-forward DNN with L−1 hidden
layers, and adopt the following approximations to the standard
architecture:

1) Polynomial activation and loss functions: We use
polynomial activation and loss functions instead of
the canonical ones such that gradient computation to
train each layer can be represented as a multivariate
polynomial of the data and the weights.

2) Layer-by-layer Training: We train the DNN one layer
at a time. Once a layer is trained, its parameters are
frozen and used to generate the input data for the next
layer. We repeat this process until all L layers are trained.

While these modifications may incur performance loss (e.g.,
lower test accuracy), we empirically demonstrate that this loss is
small. Nevertheless, as we will show later, these approximations
enable a scalable design on secure distributed learning that
meets the privacy requirements.

Using layer-by-layer training essentially reduces the problem
of training a DNN with an arbitrary number of layers to training
a shallow 2-layer network. Hence, here we focus on describing
the setting for training this shallow network. Later, we will
show how to iterate this process to train the entire network.

We consider a shallow neural network with one hidden layer
containing h nodes. Let W ∈ Rh×d denote the weights from
the input layer to the hidden layer, and let V ∈ R`×h denote
the weights from the hidden layer to the output layer consisting
of a single node, where ` is the number of labels. A forward
pass of the data for a single layer is computed as,

Z = W ·X, Z ∈ Rh×m (1)

A = σ(Z), A ∈ Rh×m (2)

Ŷ = V ·A, Ŷ ∈ R`×m (3)

where we select σ(·) to be the element-wise squaring operation.
We make use of polynomial loss functions such as the mean
square error given by

C(Ŷ , Y) =
1

2m

m∑
i=1

||Ŷi − Yi||2. (4)

In this particular case, the gradients of the loss with respect to
the weights are given by the following formulas,

∂C

∂V
=

1

m
(Ŷ − Y) ·A> (5)

∂C

∂W
=

2

m
[V >(Ŷ − Y) ◦ Z] ·X> (6)

where ◦ denotes an element-wise multiplication.
In each iteration r of R total iterations, we train the model

by performing a standard gradient descent (GD) update,

Vr = Vr−1 − η
∂C

∂Vr−1
(7)

Wr = Wr−1 − η
∂C

∂Wr−1
(8)

where η denotes the learning rate.

III. BUILDING BLOCKS AND NOTATION

In this section, we lay out the notation used to formally
describe the protocol in the next section. This protocol makes
use of two main primitives: Shamir Secret Sharing and
Lagrange Coded Computing. All operations are performed
in a finite field Fp for some large prime p.

A. Shamir Secret Sharing

We denote a Shamir secret share polynomial of an item X
by

S[X](u) = X +
∑
t∈[T]

Atu
t (9)

where the At’s are uniformly random pads of a finite field
and u is the indeterminate. For definiteness, we will affix a
superscript when needed to uniquely identify the pads used in
a particular encoding, letting AXt refer to a pad used to encode
X and AWt a pad used to encode W . While this notation
occasionally becomes somewhat heavy, we aim to include no
more identifiers than needed for disambiguation.

Typically, the secret share of X generated for a node j is
obtained by evaluating S[X](u) at λj , where the λj’s are a set
of unique points known to all nodes. Specifically, we denote
Sj [X] = S[X](λj).

Shamir Secret Sharing is T -private. In other words, it has
the property that for any collection C ⊂ [N] with |C| ≤ T ,

I(X; (Sj [X])j∈C) = 0. (10)

Conversely, for any collection of C ⊆ [N], with |C| > T , a node
having (Sj [X])j∈C is able to perfectly reconstruct S[X](u),
and hence X .

Clients Quantize Data and
Secret Share with Workers

Workers Encode Data

Workers Encode Weights

Local Gradient
Computation

Decoding

Gradient Update

Workers pass data
through trained layer

Fig. 2. Task flow of DeepPrivate protocol in training a DNN with arbitrary
number of layers.

B. Lagrange Encoding

For a collection1 of K items X = (X1, . . . , XK), we denote
the Lagrange interpolating polynomial with T padding terms
by

L[X](v) =
∑
k∈[K]

mk(v)Xk +
∑

k∈[K+T]\[K]

mk(v)Bk (11)

where the Bk’s are uniformly random elements of a finite field,
v is the indeterminate, and

mk(v) =
∏

`∈[K+T]\k

v − β`
βk − β`

,

where the βk’s are a set of unique points. As previously, for a
collection of unique αk’s (each distinct from any βk), we let

Lj [X] = L[X](αj). (12)

Like Shamir Secret Sharing, Lagrange encodings are T -private.
Since L[X](v) is a (K + T − 1)-degree polynomial in v, for
any collection of C ⊆ [N], with |C| ≥ K + T , a node having
(Lj [X])j∈C is able to perfectly reconstruct L[X](v), and hence
X. For definiteness, we use notations such as BX

k to denote
the pads used to encode X.

IV. DEEPPRIVATE PROTOCOL

In this section we focus on describing the proposed Deep-
Private protocol for training a single layer of a DNN, and how
we obtain the data for training the next layer, which repeats
the same training process.

1In general, boldface variables will denote collections of K items.

A. Quantization and Secret Sharing

Each data node (data owner) quantizes its local data into a
finite field Fp for some large p, and distributes the quantized
data to the workers via Shamir secret shares. We leave the
details of quantization to the supplementary materials. For
convenience and clarity, we use X̄i to denote the quantized
dataset of data node i (this includes both the input features
and the output labels). Each data node i creates and sends a
secret share Sj [X̄i] of X̄i to each worker node j ∈ [N]. Once
worker j receives Sj [X̄i] from each i ∈ [M], it concatenates
them to form its secret share of the joint dataset, denoted by
Sj [X] where X = [X̄1, . . . , X̄M]. With some design parameter
K < N , each worker j partitions this secret share Sj [X]
into K parts of equal size, which we denote collectively by
Sj [X] , (Sj [Xk])k∈[K] for the partition X , [X1, . . . , XK].

B. Dataset and Weight Encoding

To achieve computational efficiency, our protocol has each
worker process 1/K of the entire dataset when computing
gradients, with Lagrange Coded Computing to protect data and
model privacy. To do this, before the training starts, workers
encode their local secret shares and communicate with each
other for each worker i to obtain the Lagrange encoding Li[X].

Before proceeding to describe the encoding procedures for
data and weights, we note that the proposed DeepPrivate
employs Commodity-Based Cryptography [5], and relies on
a Trusted Initializer (TI) to provide random pads that do not
depend on the inputs (i.e., the training data and the weights)
to the protocol. This type of functionality is used in other
secure MPC protocols [44]. Importantly, a TI is distinct from
a Trusted Intermediary, since the TI has no access to any private
data.

Before the training of the current layer starts, the TI
samples T random pads (BX

k)k∈[K+T]\[K] uniformly at ran-
dom, and sends their secret shares evaluated at λj , i.e.,
(Sj [B

X
k])k∈[K+T]\[K] to worker j (note that Sj [BX

k] itself
is constructed using additional pads denoted by (ABk

t)t∈[T]).
Using these secret shares as pads, worker j constructs the
following polynomial

L[Sj [X]](v) =
∑
k∈[K]

mk(v)Sj [Xk]+

∑
k∈[K+T]\[K]

mk(v)Sj [B
X
k], (13)

evaluates the polynomial αi to obtain Li[Sj [X]], and sends it
to worker i, for all i ∈ [N].

It is straightforward to show (as we do in the supplementary
material) that under this procedure, once worker i receives
Li[Sj [X]] from any subset of T + 1 workers, it can use them
as valid interpolation points to recover Li[X].

Before the training of the current layer starts, each worker
j is given secret shares of the initial weights W0 and V0,
denoted by Sj [W0] and Sj [V0] respectively. In each iteration

r = 1, . . . , R of the training process, each worker j performs
Lagrange encoding on Sj [Wr−1] and Sj [Vr−1] respectively as

L[Sj [Wr−1]](v) =
∑
k∈[K]

mk(v)Sj [Wr−1]+

∑
k∈[K+T]\[K]

mk(v)Sj [B
Wr−1

k]; (14)

L[Sj [Vr−1]](v) =
∑
k∈[K]

mk(v)Sj [Vr−1]+

∑
k∈[K+T]\[K]

mk(v)Sj [B
Vr−1

k], (15)

with the random pads (Sj [B
Wr−1

k], Sj [B
Vr−1

k])k∈[K+T]\[K]

received from the TI. Then worker j evaluates these two
polynomials at αi and sends the results Li[Sj [Wr−1]] and
Li[Sj [Wr−1]] to worker i, for all i ∈ [N]. Similarly as for the
data, worker i recovers Li[Wr−1] and Li[Vr−1] after receiving
messages from any subset of T + 1 workers. To summarize,
at the beginning of iteration r of training a certain layer, each
worker i has Li[X], Li[Wr−1], Li[Vr−1].

C. Local Computations and Secret Sharing of Coded Results

In iteration r of the training process, the workers perform
gradient computation in the LCC domain. That is, letting

fV (X, V,W) = m
∂C

∂V
, (16)

fW (X, V,W) = m
∂C

∂W
, (17)

each node i computes

fV (Li[X], Li[Wr−1], Li[Vr−1]) = qV (αi), (18)
fW (Li[X], Li[Wr−1], Li[Vr−1]) = qW (αi), (19)

where qV (v) and qW (v) are polynomials of degrees
deg(fV)(K + T − 1) and deg(fW)(K + T − 1) respectively.
By carefully examining the gradient expressions in (5) and (6),
we have deg(fV) = deg(fW) = 9.

Having computed the gradients on their local Lagrange
encoded data, workers create secret shares of computation
results and communicate with each other, such that each worker
can decode a secret share of the gradient computed over the
entire dataset X. As such operations are identical for the
weights W and V , we describe the operation once in the
following without specifying the subscript for the function f .

For each t = 1, . . . , T , the TI samples K random pads
AG1
t , , . . . , AGK

t , one for each Gk , f(Xk,W, V). Next, for
each t, the TI performs Lagrange encoding on the bundle
AG
t , (AGk

t)k∈[K], and distributes the T coded random pads
(Lj [A

G
t])t∈[T] to each worker j ∈ [N]. Note that to maintain

security, we have the degrees of the Lagrange polynomials
created at the TI match the degree of q(v). We provide
the explicit constructions of the Lagrange encodings in the
supplementary material.

Having received the coded random pads (Lj [A
G
t])t∈[T] from

the TI, each worker j uses them as pads to secret share its

local computation result q(αj). Specifically, worker j sends
Si[q(αj)] to each worker i ∈ [N] where

Si[q(αj)] = q(αj) +
∑
t∈[T]

Lj [A
G
t]λti (20)

D. Decoding

Worker i waits to collect P = 9(K+T−1)+1 secret shares
(Si[q(αj)])j∈Ii where Ii denotes the set of P workers whose
messages are received at worker i first. In the supplementary
material, we show that by interpolating these secret shares at
points (αj)j∈Ii , worker i obtains a polynomial pi(v) of degree
P −1. Next, worker i evaluates pi(v) at the points β1, . . . , βK
such that

pi(βk) = Gk +
∑
t∈[T]

AGk
t λti = Si[Gk]. (21)

These secret shares Si[G1], . . . , Si[GK] are then aggregated to
form a secret share of the full gradient over the entire dataset
X at worker i:

Si[f(X,W, V)] =
∑
k∈[K]

Si[Gk]. (22)

E. Model Update

In this stage, the workers multiply their secret shares of the
gradient by the learning rate and subtract the product from
the current weights. Specifically, in iteration r, the workers
undergo a Secure Truncation protocol [12] to obtain secret
shares of η

mfV (X, Vr,Wr) and η
mfW (X, Vr,Wr). Then each

worker i recovers a secret share of the new weights as follows:

Si[Vr+1] = Si[Vr]− Si
[η
m
fV (X, Vr,Wr)

]
, (23)

Si[Wr+1] = Si[Wr]− Si
[η
m
fW (X, Vr,Wr)

]
. (24)

It is important to note that we cannot retain full precision when
multiplying the gradient by η

m < 1. If we wanted to do so,
the size of Fp would have to increase exponentially with the
number of iterations. Thus, the Secure Truncation protocol
we use introduces some noise. However, note that since the
protocol produces an unbiased estimator of the true gradient,
the training process still converges in spite of this introduced
noise.

F. Sending Results to the Learner

During the training of one layer of the neural network, once
the workers have performed R iterations, and each of them
has a secret share of the final weights WR, the workers must
send these secret shares to the Learner so that the Learner can
recover the weights in the clear.

Each worker i proceeds to send Si[WR] to the Learner. The
Learner can then recover the final weights WR whenever it
receives T + 1 shares.

G. Moving to the Next Layer

By the end of training a particular layer with the trained
weights WR, each worker i has a secret share of the input data
Si[X] and a secret share of the weights Si[WR]. The workers
undergo a T -private secure MPC protocol (e.g., the BGW
protocol) to compute a secret share Si[σ(WR · X)] at each
worker i. Note that we will need to perform degree reduction
twice to maintain a degree-T secret share of σ(WR · X) at
each worker. Treating these secret shares as their inputs to the
next layer, as shown in Figure 2, the workers repeat the above
steps to train the next layer.

V. CORRECTNESS AND PRIVACY GUARANTEES

We begin by formally stating the recovery threshold for the
correctness our protocol, which stems from the requirement that
the workers interpolate a polynomial of degree 9(K + T − 1)
during each iteration. We present a formal proof of the theorem
in the supplementary materials.

Theorem 1. For any N ≥ 9(K + T − 1) + 1, the proposed
deepPrivate protocol correctly performs gradient descent such
that for each iteration r,

Vr+1 = Vr − η
∂C

∂Vr
+ nVr , (25)

Wr+1 = Wr − η
∂C

∂Wr
+ nWr , (26)

for some additive noises nVr and nWr with E[nVr] = E[nWr] = 0,
and E[||nVr ||22] ≤ σ2, E[||nWr ||22] ≤ σ2 for some σ2 defined by
the Secure Truncation Protocol.

It is well known that gradient descent is robust to the additive
noise mentioned in the theorem statement; indeed, additive
noise has long been used during training as a regularization
technique to aid in generalization [9].

We next state the privacy guarantees of our protocol,
amounting to data privacy on the learner side, and data and
model privacy on the client side.

A. Learner Side Privacy

We start by demonstrating privacy on the learner side.

Theorem 2. The only thing the Learner learns are the final
weights of each layer. In particular, for each layer,

P(X|(Sj [WR])j∈[N])) = P(X|WR) (27)

Proof. Since each are T + 1 evaluation points of the
same T -degree polynomial, there exists a bijection between
(Sj [WR])j∈[N] and (WR, (At)t∈[T]). Here, (At)t∈[T] denotes
the collection of random pads that are masking WR. Thus, we
have

P(X|(Sj [WR])j∈[N]) = P(X|WR, (At)t∈T) (28)
= P(X|WR), (29)

with the final equality because the pads are independent of X
and WR.

X

SX LX

AX

Fig. 3. Dependencies between SX and LX , where AX is shorthand for
(AX

t)t∈[T]

B. Client Side Privacy

Our client security theorem guarantees that for any subset
C of up to T colluding workers, they cannot learn anything
about W , V , or X from the set of messages received by those
workers.

Theorem 3. For any subset C of up to T colluding workers,
we have

P(WR|((Mi,r)r∈[R])i∈C) = P(WR), (30)
P(X|((Mi,r)r∈[R])i∈C) = P(X), (31)

where Mi,r,l represents the messages received at worker i in
iteration r.

This theorem declares client side privacy for a single layer
of training. However, it is clear to see how privacy extends to
the whole protocol. Note that the ”output” of each layer from
the clients’ perspective is a secret share of the weights W `

R. As
we show in the proof of the theorem, this secret share (and its
pads) is independent of any messages sent between the clients
during the training of layer `. Thus, no messages sent during
a previous layer hold any information about messages sent in
subsequent ones.

In fact, we rely on this independence between messages and
secret shares to prove privacy within a layer as well. A pre-
liminary step in proving the theorem is to group the messages
Mi,r into “non-intersecting” groups, in the sense that no two
groups depend on the same random pads. However, this is only
possible up to a point, due to the interaction between secret
sharing and lagrange encoding present in the protocol. This
interaction is reflected in the existence of collections messages
such as SX , (Si[X])i∈C and LX , ((Li[Sj [X]])j∈[N])i∈C
both of which are constructed using AX , (AX

t)t∈[T] (See
Figure 3). To establish independence between these groups,
we first make use of two “commutation lemmas” illustrate that
the protocols described in Sections IV-B and IV-D are secure.
. The lemmas allow us to ”separate” the messages sent into
pure secret shares or pure lagrange shares of either values of
interest or pads, and in turn simply demonstrate the desired
independence.

VI. COMPLEXITY ANALYSIS

In this section, we compare the complexity of the proposed
DeepPrivate with BGW protocol [7], a celebrated secure MPC

TABLE I
COMPARISON OF COMPLEXITY PER WORKER OF PROPOSED DEEPPRIVATE PROTOCOL AND BGW PROTOCOL FOR TRAINING ONE LAYER OF A DNN. HERE,
N IS THE NUMBER OF WORKERS, m IS THE TOTAL NUMBER OF DATA POINTS, d IS THE INPUT DIMENSION, ` IS THE OUTPUT DIMENSION, h IS THE NUMBER

OF NODES IN THE HIDDEN LAYER, AND R IS THE NUMBER OF TRAINING ITERATIONS.

Complexity DeepPrivate BGW
Gradient computation O(

mh(d+`)
K

R) O (mh(d+ `)R)

LCC coding O
(

mdN(logN)
K

+ h(d+ `)N(logN)R
)

None

Communication between workers O
(

md
K

N + h(d+ `)NR
)

O (m(h+ `)R+ h(d+ `)R) broadcasts
Required no. of workers N ≥ 9(K + T − 1) + 1 N ≥ 2T + 1

protocol, for training a single DNN layer. Specifically, using
BGW, each worker directly computes (5) and (6) on its secret
shares of the data and the weights to obtain a secret share of
the gradient. Also, we consider the implementation of BGW
with degree reduction (optimized version as in [6]), where
the degree of secret polynomial is maintained at T after each
multiplication of secret shares.

We provide the detailed analysis of the complexities of the
two protocols in the supplementary material, and summarize
the results in Table I. We can see that the proposed DeepPrivate
protocol improves the complexity of the expensive gradient
computation (especially for big datasets with large m) by K×
over the BGW protocol. Specifically, DeepPrivate workers
perform gradient computations over Lagrange coded data
partitions with size that is 1

K of the entire dataset. This
demonstrates the scalability of the DeepPrivate protocol, i.e.,
when more workers join the system, we can have the number of
data partitions K = Θ(N) scale linearly with N . Then, we can
either process more data by setting m = Θ(N) while keeping
the computational load of each worker constant, or fix m and
have each worker process less amount of data, hence speeding
up the training process. Also, we observe that DeepPrivate can
protect data and model privacy from a constant fraction of the
workers no matter how large the network size N is, e.g., by
setting T = Θ(N).

VII. EMPIRICAL RESULTS

In this section, we provide experimental results on training
a seven-layer neural network LeNet-5 [28] using DeepPrivate
on three different datasets: MNIST [27], Fashion-MNIST [48]
and SVHN [35]. Specifically, we adopt DeepPrivate with the
layer-by-layer training architecture, MSE loss function, and
quadratic activation function.

For comparison, we also train LeNet-5 with the gold standard
end-to-end training with backpropogation, cross-entropy loss,
and ReLU activation function; and a linear model using logistic
regression with the COPML protocol.2

We can see in Figure 4 that for all datasets, LeNet-
5 trained by the gold standard approach and DeepPrivate
consistently outperforms the linear model trained by COPML

2As the polynomial approximation of the logistic function in COPML was
designed for binary classification, and does not naturally generalize to the
multi-class scenario we are considering here, we keep the cross-entropy loss
for COPML and expect the observed test accuracy as an upper bound on what
would have been achieved by COPML.

Fig. 4. Test accuracy comparison of training a DNN LeNet-5 and a linear
model on different datasets.

by a large margin, demonstrating the effectiveness of the
proposed approximations in DeepPrivate in picking up the
power of deep neural networks.

Moreover, DeepPrivate incurs no loss on the relatively simple
MNIST and Fashion-MNIST datasets, and a marginal hit on
SVHM, compared with the gold standard training algorithm. We
suspect the loss of performance attributes to 1) lack of flexibility
of updating earlier layers during layer-by-layer training (as
they are frozen after being trained); and 2) numerical instability
caused by polynomial activation and loss functions. Optimizing
DeepPrivate to minimize performance loss on more complicated
datasets remains as an important future research.

VIII. CONCLUSION AND FUTURE RESEARCH

DeepPrivate uses state-of-the-art coding techniques and
layer-by-layer training to achieve distributed training of a
neural network in an information-theoretically private manner.
Future research on using layer-by-layer training and polynomial
activation functions for more complicated datasets would allow
for DeepPrivate to be used for a wider range of problems.

REFERENCES

[1] Agrawal, N., Shahin Shamsabadi, A., Kusner, M. J., and
Gascón, A. QUOTIENT: two-party secure neural network
training and prediction. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 1231–1247, 2019.

[2] Aono, Y., Hayashi, T., Trieu Phong, L., and Wang, L.
Scalable and secure logistic regression via homomorphic
encryption. In Proceedings of the Sixth ACM Conference
on Data and Application Security and Privacy, pp. 142–
144, 2016.

[3] Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al. Privacy-
preserving deep learning via additively homomorphic
encryption. IEEE Transactions on Information Forensics
and Security, 13(5):1333–1345, 2017.

[4] Asharov, G., Lindell, Y., Schneider, T., and Zohner, M.
More efficient oblivious transfer and extensions for faster
secure computation. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications
security, pp. 535–548, 2013.

[5] Beaver, D. Commodity-based cryptography (extended
abstract). In STOC ’97, 1997.

[6] Beerliová-Trubı́niová, Z. and Hirt, M. Perfectly-secure
mpc with linear communication complexity. In Theory of
Cryptography Conference, pp. 213–230. Springer, 2008.

[7] Ben-Or, M., Goldwasser, S., and Wigderson, A. Com-
pleteness theorems for non-cryptographic fault-tolerant
distributed computation. In Providing Sound Foundations
for Cryptography: On the Work of Shafi Goldwasser and
Silvio Micali, pp. 351–371. 2019.

[8] Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.
Greedy layer-wise training of deep networks. Advances
in neural information processing systems, 19:153, 2007.

[9] Bishop, C. M. Training with noise is equivalent to
tikhonov regularization. Neural computation, 7(1):108–
116, 1995.

[10] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017
ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 1175–1191, 2017.

[11] Bost, R., Popa, R. A., Tu, S., and Goldwasser, S. Machine
learning classification over encrypted data. In NDSS,
volume 4324, pp. 4325, 2015.

[12] Catrina, O. and Saxena, A. Secure computation with fixed-
point numbers. In Sion, R. (ed.), Financial Cryptography
and Data Security, pp. 35–50, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg. ISBN 978-3-642-14577-3.

[13] Chen, V., Pastro, V., and Raykova, M. Secure compu-
tation for machine learning with spdz. arXiv preprint
arXiv:1901.00329, 2019.

[14] Damgård, I. and Nielsen, J. B. Scalable and uncondi-
tionally secure multiparty computation. In Annual Inter-
national Cryptology Conference, pp. 572–590. Springer,

2007.
[15] Demmler, D., Schneider, T., and Zohner, M. Aby-a

framework for efficient mixed-protocol secure two-party
computation. In NDSS, 2015.

[16] Geiping, J., Bauermeister, H., Dröge, H., and Moeller,
M. Inverting gradients–how easy is it to break privacy
in federated learning? arXiv preprint arXiv:2003.14053,
2020.

[17] Gentry, C. et al. A fully homomorphic encryption scheme,
volume 20. Stanford university Stanford, 2009.

[18] Geyer, R. C., Klein, T., and Nabi, M. Differentially private
federated learning: A client level perspective. arXiv
preprint arXiv:1712.07557, 2017.

[19] Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. Cryptonets: Applying
neural networks to encrypted data with high throughput
and accuracy. In International Conference on Machine
Learning, pp. 201–210. PMLR, 2016.

[20] Graepel, T., Lauter, K., and Naehrig, M. Ml confidential:
Machine learning on encrypted data. In International
Conference on Information Security and Cryptology, pp.
1–21. Springer, 2012.

[21] Han, K., Hong, S., Cheon, J. H., and Park, D. Logistic
regression on homomorphic encrypted data at scale.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 9466–9471, 2019.

[22] He, L., Karimireddy, S. P., and Jaggi, M. Secure byzantine-
robust machine learning. arXiv preprint arXiv:2006.04747,
2020.

[23] Hesamifard, E., Takabi, H., and Ghasemi, M. Cryptodl:
Deep neural networks over encrypted data. arXiv preprint
arXiv:1711.05189, 2017.

[24] Hesamifard, E., Takabi, H., Ghasemi, M., and Wright,
R. N. Privacy-preserving machine learning as a service.
Proceedings on Privacy Enhancing Technologies, 2018
(3):123–142, 2018.

[25] Hettinger, C., Christensen, T., Ehlert, B., Humpherys,
J., Jarvis, T., and Wade, S. Forward thinking: Building
and training neural networks one layer at a time. arXiv
preprint arXiv:1706.02480, 2017.

[26] Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning
algorithm for deep belief nets. Neural computation, 18
(7):1527–1554, 2006.

[27] LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

[28] LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes,
C., Denker, J., Drucker, H., Guyon, I., Muller, U.,
Sackinger, E., et al. Comparison of learning algorithms for
handwritten digit recognition. In International conference
on artificial neural networks, volume 60, pp. 53–60. Perth,
Australia, 1995.

[29] Li, P., Li, J., Huang, Z., Gao, C.-Z., Chen, W.-B., and
Chen, K. Privacy-preserving outsourced classification
in cloud computing. Cluster Computing, 21(1):277–286,
2018.

[30] Lindell, Y. and Pinkas, B. Privacy preserving data mining.

In Annual International Cryptology Conference, pp. 36–
54. Springer, 2000.

[31] McMahan, B., Moore, E., Ramage, D., Hampson, S.,
and y Arcas, B. A. Communication-efficient learning
of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pp. 1273–1282. PMLR, 2017.

[32] McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L.
Learning differentially private recurrent language models.
In 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=BJ0hF1Z0b.

[33] Mohassel, P. and Rindal, P. Aby3: A mixed protocol
framework for machine learning. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pp. 35–52, 2018.

[34] Mohassel, P. and Zhang, Y. Secureml: A system for
scalable privacy-preserving machine learning. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 19–38.
IEEE, 2017.

[35] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. 2011.

[36] Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M.,
Boneh, D., and Taft, N. Privacy-preserving ridge regres-
sion on hundreds of millions of records. In 2013 IEEE
Symposium on Security and Privacy, pp. 334–348. IEEE,
2013.

[37] Peikert, C., Vaikuntanathan, V., and Waters, B. A
framework for efficient and composable oblivious transfer.
In Annual international cryptology conference, pp. 554–
571. Springer, 2008.

[38] Rouhani, B. D., Riazi, M. S., and Koushanfar, F. Deepse-
cure: Scalable provably-secure deep learning. In Proceed-
ings of the 55th Annual Design Automation Conference,
pp. 1–6, 2018.

[39] Shamir, A. How to share a secret. Communications of
the ACM, 22(11):612–613, 1979.

[40] Shokri, R., Stronati, M., Song, C., and Shmatikov, V.
Membership inference attacks against machine learning
models. In 2017 IEEE Symposium on Security and Privacy
(SP), pp. 3–18. IEEE, 2017.

[41] So, J., Güler, B., and Avestimehr, A. S. Byzantine-resilient
secure federated learning. IEEE Journal on Selected Areas
in Communications, 2020.

[42] So, J., Guler, B., and Avestimehr, A. S. A scalable
approach for privacy-preserving collaborative machine
learning. arXiv preprint arXiv:2011.01963, 2020.

[43] Sun, X., Zhang, P., Liu, J. K., Yu, J., and Xie, W. Private
machine learning classification based on fully homomor-
phic encryption. IEEE Transactions on Emerging Topics
in Computing, 8(2):352–364, 2018.

[44] Tonicelli, R., Nascimento, A. C. A., Dowsley, R., Müller-
Quade, J., Imai, H., Hanaoka, G., and Otsuka, A.
Information-theoretically secure oblivious polynomial
evaluation in the commodity-based model. International

Journal of Information Security, pp. 73–84, 2014.
[45] Truex, S., Liu, L., Chow, K.-H., Gursoy, M. E., and Wei,

W. Ldp-fed: Federated learning with local differential
privacy. In Proceedings of the Third ACM International
Workshop on Edge Systems, Analytics and Networking,
pp. 61–66, 2020.

[46] Wagh, S., Gupta, D., and Chandran, N. Securenn: 3-
party secure computation for neural network training.
Proceedings on Privacy Enhancing Technologies, 2019
(3):26–49, 2019.

[47] Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q.,
and Qi, H. Beyond inferring class representatives:
User-level privacy leakage from federated learning. In
IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, pp. 2512–2520. IEEE, 2019.

[48] Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

[49] Yao, A. C. Protocols for secure computations. In 23rd
annual symposium on foundations of computer science
(sfcs 1982), pp. 160–164. IEEE, 1982.

[50] Yu, Q., Li, S., Raviv, N., Kalan, S. M. M., Soltanolkotabi,
M., and Avestimehr, S. A. Lagrange coded computing:
Optimal design for resiliency, security, and privacy. In The
22nd International Conference on Artificial Intelligence
and Statistics, pp. 1215–1225. PMLR, 2019.

[51] Yuan, J. and Yu, S. Privacy preserving back-propagation
neural network learning made practical with cloud com-
puting. IEEE Transactions on Parallel and Distributed
Systems, 25(1):212–221, 2013.

[52] Zhu, L. and Han, S. Deep leakage from gradients. In
Federated Learning, pp. 17–31. Springer, 2020.

https://openreview.net/forum?id=BJ0hF1Z0b

APPENDIX A
CORRECTNESS PROOF

In this section, we state and prove two lemmas that will
help with the proofs of both Theorems 1 and 3. We then prove
Theorem 1.

In this and the following section, for the clarity of exposition,
we state and prove results with respect to X and W only.
However, the arguments are fully generic and extend to the
full case in which calculations involve the full set of variables
X , W , and V without modification.

Before proceeding to the important lemmas and proofs,
we specify the form of the modified Lagrange encodings,
(Li[A

G
t])t∈[T] generated and distributed by the Trusted Initial-

izer in Section IV-D. To maintain security, the Trusted Initializer
must match the degree of the encoding Lagrange polynomial
to that of q(v), which equals to P − 1 = 9(K + T − 1). Thus,
each Lagrange encoding looks like

Li[A
G
t] =

∑
k∈[K]

mk(αi)A
Gk
t +

∑
k∈[P]\[K]

mk(αi)B
At

k , (32)

where the BAt

k ’s are pads known only to the Trusted Initializer
and we have implicitly expanded the βk’s to be a collection
of P unique points.

We now state and prove the commutation lemmas.

Lemma 4. For a bundle of items X and any collection of
nodes C with |C| ≥ T + 1, there is a bijection (with the λj’s
as common knowledge):

(Li[Sj [X]])j∈C ←→ (Li[X], (Li[A
X
t])t∈[T])). (33)

where

Li[A
X
t] =

∑
k∈[T]

mk(αi)A
Xk
t +

∑
k∈[K+T]\[K]

mk(αi)A
Bk
t

Proof. Simple algebraic manipulation shows that

Li[Sj [X]] = Li[X]+∑
t∈[T]

(
K∑
k=1

mk(αi)A
Xk
t +

K+T∑
k=K+1

mk(αi)A
Bk
t

)
λtj (34)

= Li[X] +
∑
t∈[T]

Li[A
X
t]λtj (35)

which corresponds to a degree-T polynomial evaluated at
λj (note that the only dependence on j is through λj).

Given a collection (Li[Sj [X]])j∈C , by interpolating the poly-
nomial, we can uniquely determine Li[X] and (Li[A

X
t])t∈[T].

Conversely, given these quantities, we can reconstruct the
polynomial and evaluate them at (λj)j∈C to uniquely obtain
(Li[Sj [X]])j∈C .

Lemma 5. At each worker i, for any subset of nodes C with
|C| ≥ P and a collection of corresponding computation results
(f(Lj [X], Lj [W]))j∈C , there is a bijection (with the αj’s and
βk’s as common knowledge):

(Si[f(Lj [X], Lj [W])])j∈C ←→
((Si[f(Xk,W)])k∈[K], (Si[ξk])k∈[P]\[K]), (36)

where
Si[ξk] = ξk +

∑
t∈[T]

BAt

k λti

and ξk := f(BX
k , B

W
k) for k ∈ [K + T] \ [K] and ξk =

f(L[X](βk), L[W](βk)) for k ∈ [P] \ [K + T]

Proof. Each worker i receives evaluation points of the form

pi(αj) = Si[q(αj)] = q(αj) +
∑
t∈[T]

Lj [A
G
t]λti, (37)

for each j ∈ C. Recall that the q(αj)’s correspond
to evaluations of a degree-(P − 1) polynomial q(v) =
f(L[X](v), L[V](v), L[W](v)). The second term, as shown
in (32), corresponds to the evaluation of a degree-(P − 1)
polynomial q̃i(v) at αj , where

q̃i(v) =
∑
t∈[T]

∑
k∈[K]

mk(v)AGk
t λti+

∑
t∈[T]

∑
k∈[P]\[K]

mk(v)BAt

k λti.

(38)
Now let us consider the evaluations of the polynomial

pi(v) = q(v) + q̃i(v) at the P unique points defined by the
βk’s: for k ∈ [K], we have

pi(βk) = f(Xk,W) +
∑
t∈[T]

AGk
t λti, (39)

for k ∈ [K + T] \ [K], we have

pi(βk) = f(BX
k , B

W
k) +

∑
t∈[T]

BAt

k λti, (40)

and for k ∈ [P] \ [K + T], we have

pi(βk) = f(L[X](βk), L[W](βk)) +
∑
t∈[T]

BAt

k λti (41)

As we have shown that both the LHS and the RHS of the
lemma statement are a collection of P distinct points on the
polynomial pi(v), the bijection follows.

Finally, we proceed to prove Theorem 1. Technically, we
show that the learner receives a valid secret share of WR, after
running R iterations of the proposed DeepPrivate protocol.

Proof of Theorem 1. To start, we fix N ≥ 9(K + T − 1) + 1.
We first note that via initialization, each worker i is supplied

with a secret share Si[W0]. Then, via distribution from the
data nodes, each worker i obtains a secret share of Si[Xk]
for each k ∈ [K]. By receiving Li[Sj [X]] from each j in any
group of T + 1 workers, Lemma 4 guarantees that node i can
reconstruct Li[X].

We now show the main result through an inductive argument.
Assuming that at the beginning of iteration r, each node i has
valid secret share, Si[Wr] and Lagrange encoding Li[X], it
suffices to show that at the end the iteration, each node i has
a valid secret share Si[Wr+1] where

Wr+1 = Wr − η
∂C

∂W
+ n. (42)

We review the steps needed for this calculation, along with
the recovery thresholds for each step:

1) By receiving Li[Sj [Wr]] from each j in any group of
T + 1 workers, Lemma 4 guarantees that node i can
reconstruct Li[Wr].

2) Given Lagrange encodings Li[X] and Li[Wr], node i
can locally calculate the gradient f(Lj [X], Lj [Wr]).

3) Next, by receiving Si[f(Lj [X], Lj [Wr])] from each j
in any group of P workers, Lemma 5 guarantees that
node i can recover Si[f(Xk,Wr)] for all k ∈ [K]. By
summing over k, worker i obtains Si[m ∂C

∂Wr
].

4) The Secure Truncation Protocol guarantees that starting
with secret shares of the form Si[m

∂C
∂Wr

], a collection
of N ≥ 2T + 1 nodes can distribute secret shares of
η ∂C
∂Wr

+ n, where n satisfies E[n] = 0, E[||n||22] ≤ σ2

for some σ2 defined by the Secure Truncation Protocol
[42].

5) Finally, by subtracting the secret share of η ∂C
∂Wr

+ n
from the initial the secret share of Wr, node i obtains
the result stated in (42).

The theorem follows as all above steps can be performed
successfully when supplied with N ≥ 9(K + T − 1) + 1
computation results.

APPENDIX B
CLIENT-SIDE PRIVACY PROOF

In this section, we prove Theorem 3. Before carrying out the
proof, we briefly review the messages received by the nodes in
a subset C over the course of the execution of the protocol, and
restate the theorem based on some groupings of the messages.

At the outset, the nodes receive secret shares of both the
initial weights and data, which we denote as follows:

SX = (Si[X])i∈C

SW0 = (Si[W0])i∈C .

The secret shares of X are redistributed as Lagrange encodings
for the sake of Lagrange coded computing:

LX = ((Li[Sj [X]])j∈[N], (Si[B
X
k])k∈[T])i∈C

In this case the nodes also know secret shares of Lagrange
pads, which we include within the message bundle.

In each iteration r ∈ [R], secret shares of Wr are also
redistributed as Lagrange encodings to enable Lagrange coded
computing:

LWr = ((Li[Sj [Wr]])j∈[N], (Si[B
Wr

k])k∈[T])i∈C

Gradient computations are applied on the Lagrange encoded
data and weights, and the coded results are secret shared:

Gr = ((Si[f(Lj [X], Lj [Wr])])j∈[N],

(Li[A
G,r
t])t∈[T])i∈C

In this case, the nodes also know Lagrange encodings of secret
share pads, which we include within the bundle.

Finally, a secure truncation protocol is used to perform the
gradient update, resulting in secret shares of the new weights.

SWr = (MSTP
i,r)i∈C = (Si[Wr])i∈C (43)

Wr

SWr LWr

AWr

Fig. 5. Dependencies between SWr and LWr , where AWr is shorthand
for (AWr

t)t∈[T].

Since the secure truncation protocol is known to be T -private,
we only consider the resulting secret share in our security
analysis.

Next, we restate Theorem 3 with the above defined groups
of messages in the following Theorem 6. We note that proving
Theorem 6 suffices to show client-side privacy.

Theorem 6. For any subset C of workers with |C| ≤ T , we
have

P(WR|SX ,LX , (SWr,LWr,Gr)r∈[R])=P(WR), (44)
P(X|SX ,LX , (SWr,LWr,Gr)r∈[R])=P(X). (45)

Proof. By applying the commutation lemmas, we can simplify
some of the groupings

LX = (Li[X], (Li[A
X
t])t∈[T], (Si[B

X
k])k∈[T])i∈C

LWr = (Li[Wr], (Li[A
Wr
t])t∈[T], (Si[B

Wr

k])k∈[T])i∈C

Gr = ((Si[f(Xk,Wr)])k∈[K], (Si[ξk])k∈[P]\[K],

(Li[A
G,r
t])t∈[T])i∈C

The result follows essentially by observing the dependency
structure of the groupings.

As an example, we consider the bundles LWr and SWr

for some r ∈ [R]. The dependencies between the two are
represented by the graphical model in Figure 5. From the
graphical model we decompose the joint distribution as follows:

P(LWr,SWr,Wr, (A
Wr
t)t∈[T])

=P(Wr)P((AWr
t)t∈[T])×P(LWr|Wr, (A

Wr
t)t∈[T])

×P(SWr|Wr, (A
Wr
t)t∈[T]).

We observe that for each t = 1, . . . , T , LWr contains no
more than T Lagrange encodings of AWr

t , and hence LWr is
independent of (AWr

t)t∈[T]. Moreover, since LWr contains no
more than T Lagrange encodings of Wr it is independent of
Wr. In particular, these two results imply

P(LWr|Wr, (A
Wr
t)t∈[T]) = P(LWr).

Combining with the previous expansion, we have

P(LWr,SWr,Wr, (A
Wr
t)t∈[T])

=P(Wr)P((AWr
t)t∈[T])P(LWr)P(SWr|Wr, (A

Wr
t)t∈[T])

=P(Wr)P(LWr)P(SWr, (A
Wr
t)t∈[T]|Wr).

Gr

LWr

BWr

Fig. 6. Dependencies between LWr and Gr , where BWr is shorthand for
(BWr

k)k∈[K+T]\[K]

Marginalizing the above expression over (AWr
t)t∈[T] yields

P(LWr,SWr,Wr) = P(Wr)P(LWr)P(SWr|Wr)

= P(Wr)P(LWr)P(SWr),

where the last equality follows because SWr is independent
of Wr.

Followng the same reasoning, we can factorize
P(LX ,SX , X) as

P(LX ,SX , X) = P(X)P(LX)P(SX).

The same strategy applies concerning the bundles LWr and
Gr. In this case, the relevant graph is displayed in Figure 6. The
dependence structure allows the joint distribution to decompose
as

P(Gr,LWr, (B
Wr

k)k∈[K+T]\[K])

=P((BWr

k)k∈[K+T]\[K])×P(LWr|(BWr

k)k∈[K+T]\[K])

×P(Gr|LWr, (B
Wr

k)k∈[K+T]\[K]).

However, since Gr contains no more than T secret shares of
f(BX

k , B
Wr

k) for each k ∈ [K + T] \ [K], it is independent of
(BWr

k)k∈[K+T]\[K]. Moreover, since LWr contains no more
than T Lagrange encodings of Wr and less than T secret shares
of the pads used to Lagrange encode Wr, it is independent
of (Wr, (ξk)k∈[K+T]\[K]). In particular, chaining these two
results, we have

P(Gr|LWr, (B
Wr

k)k∈[K+T]\[K]) = P(Gr)

Combining with the previous expression, we find that

P(Gr,LWr, (B
Wr

k)k∈[K+T]\[K]) = P(LWr, (B
Wr

k)k∈[K+T]\[K])P(Gr).

Marginalizing the above expression over (BWr

k)k∈[K+T]\[K]

yields

P(Gr,LWr) = P(Gr)P(LWr)

While we do not show the full dependency graph here for the
sake of space, we can continue this same manner, ultimately
showing that the joint distribution fully factorizes over the
groups of messages,

P(X,W,SX ,LX , (SWr,LWr,Gr)r∈[R])

=P(X)P(W)P(SX ,LX , (SWr,LWr,Gr)r∈[R]), (46)

which demonstrates the desired independence.

APPENDIX C
COMPLEXITY ANALYSIS

In this section, we show how we arrive at our complexity
results shown in Section VI for DeepPrivate and BGW. We
analyze the complexity of these two protocols when training a
DNN using layer-by-layer training and polynomial activations.

Workers: We’ve shown this result for our protocol in the
decoding step. For BGW, since the workers operate directly
on secret shares, they need enough workers to recover a secret
share of a multiplication gate. Thus, N ≥ 2T + 1.

Computation: Recall that the local computation for the
weights W is as follows:

∂C

∂W
= 2(V (Ŷ − Y) ◦ Z)X> (47)

Here, V has shape h × `, Ŷ and Y have shape ` ×m, Z
has shape h ×m, and X has shape d ×m. Note that since
each worker does a fixed amount of matrix multiplications, this
computation will be dominated by the multiplication with the
largest dimension. We assume here that m >> `. In this case,
that is the term ZX>. In our protocol, X has dimension m

K .
Thus, this computation is O(mK dh). For BGW, this is O(mdh).
Since this computation is done every iteration, we multiply
each term by R. Similarly, the computation for ∂C

∂V incurs
a computation complexity of O(mK `h) for DeepPrivate and
O(m`h) for BGW.

Communication: We first take BGW and examine the
communication complexity for a given iteration. Adopting
the technique proposed in [6] to improve the communication
efficiency of the vanilla BGW, after every multiplication, each
worker broadcasts its result perform a degree-reduction opera-
tion. Since they are computing a fixed amount of multiplication
gates, the complexity is determined by the largest item they
must send to each other. When doing the forward pass to
compute ∂C

∂W , the workers must compute Z = WX with shape
h×m. They must also compute ZX> with shape h×d. Thus,
each node must broadcast matrices of these sizes to other
nodes. Similarly, when computing ∂C

∂W , each worker needs to
broadcast matrices of sizes `×m and `×h. So the complexity
for one iteration is O(hmR+ hdR+ `mR+ `hR) broadcasts
per worker.

DeepPrivate, on the other hand, incurs communication
costs for encoding and exchanging local computation results.
When encoding the data, workers send matrices of size md

K
to each other worker. Each iteration when encoding the
weights, workers send matrices of size dh and `h to each
worker. Thus, the encoding communication complexity is
O(mdK N + h(d+ `)NR).

Encoding/Decoding Computation: In DeepPrivate, the
workers incur the computational work of encoding and decoding
as a result of transitioning in and out of the Lagrange domain.
In the BGW scheme, as all computations are done over secret
shares, workers don’t incur this cost.

In the encoding step, worker i must do three things:
interpolate a Lagrange polynomial, evaluate it at N points, and

then interpolate the points it receives from the other workers.
Creating a Lagrange polynomial using K + T points has
complexity O((K+T) log(K+T)). Evaluating this polynomial
at N points takes O(N logN) time. Interpolating a polynomial
of degree T with T + 1 points takes O((T + 1) log(T + 1))
time. We then multiply by the size of the interpolation points:
md
K . Since N ≥ (K + T), the complexity of encoding the is

data O(mdN logN
K). The complexity of encoding the weights

is similarly computed as O(h(d+ `)(N logN)R).
In the decoding phase, worker i must evaluate a degree

9(K+T −1)+1 polynomial at N points, and then interpolate
a polynomial using 9(K + T − 1) + 1 points. Each point
has size h× d. Thus, the complexity of the decoding step is
O(h(d+ `)(N logN)R).

APPENDIX D
QUANTIZATION

We detail the quantization procedure that is referenced in
Section IV-A. The data owners undergo this procedure a single
time at the beginning of the protocol.

The quantization procedure consists of a rounding operation
applied to the scaled data. We define the element-wise rounding
operation Round(X) by

[Round(X)]ij =

{
bXijc if Xij − bXijc < 0.5
bXijc+ 1 otherwise

(48)
where bxc is the largest integer less than or equal to x. We
also employ φ : Z→ Fp, defined by

φ(x) =

{
x if x ≥ 0
p+ x if x < 0

(49)

to suitably represent a negative integer in the finite field by
using two’s complement representation.

Data node i ∈ [M] quantizes its data by applying Xi ←
φ
(
Round(2lx ·Xi)

)
, where lx is an integer parameter to

control the quantization loss.

	Introduction
	Secure Distributed DNN Training
	System and Threat Models
	Privacy Requirements
	DNN Architecture

	Building Blocks and Notation
	Shamir Secret Sharing
	Lagrange Encoding

	DeepPrivate Protocol
	Quantization and Secret Sharing
	Dataset and Weight Encoding
	Local Computations and Secret Sharing of Coded Results
	Decoding
	Model Update
	Sending Results to the Learner
	Moving to the Next Layer

	Correctness and Privacy Guarantees
	Learner Side Privacy
	Client Side Privacy

	Complexity Analysis
	Empirical Results
	Conclusion and Future Research
	Appendix A: Correctness Proof
	Appendix B: Client-Side Privacy Proof
	Appendix C: Complexity Analysis
	Appendix D: Quantization

